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Abstract: Effective and efficient data management is crucial for smart farming and precision agri-
culture. To realize operational efficiency, full automation, and high productivity in agricultural
systems, different kinds of data are collected from operational systems using different sensors, stored
in different systems, and processed using advanced techniques, such as machine learning and deep
learning. Due to the complexity of data management operations, a data management reference
architecture is required. While there are different initiatives to design data management reference
architectures, a data management reference architecture for sustainable agriculture is missing. In
this study, we follow domain scoping, domain modeling, and reference architecture design stages to
design the reference architecture for sustainable agriculture. Four case studies were performed to
demonstrate the applicability of the reference architecture. This study shows that the proposed data
management reference architecture is practical and effective for sustainable agriculture.

Keywords: sustainability; agriculture; sustainable agriculture; data management; reference
architecture; design science research

1. Introduction

The increasing food demand and its large ecological footprint call for action in agricul-
tural production [1]. Inputs and assets should be optimized; long-term ecological impacts
should be assessed for sustainable agriculture. Decision-making processes on optimization
and assessment need data on several inputs, outputs, and external factors. To this end,
various systems have been developed for data acquisition and management to enable
precision agriculture [1]. Precision agriculture refers to the application of technologies and
principles for improving crop performance and environmental sustainability [2]. Smart
farming extends precision agriculture and enhances decision-making capabilities by using
recent technologies for smart sensing, monitoring, analysis, planning, and control [1]. Data
to be acquired are enhanced by context, situation, and location awareness [1]. Real time
sensors are utilized to collect various data and real time actuators are used to fine-tune
production parameters instantly.

Murakami et al. [3] and Steinberger et al. [4] pointed out a need for data storage and
a processing platform for agricultural production. They utilized web services to send
and receive data from a central web application. This web application receives, stores,
and processes data and provides the required outputs to its users or any other system.
Similarly, Sørensen et al. [5] listed several data processing use cases to assist farmers’
decision-making processes. Recent technologies, such as the Internet of Things (IoT), make
digital data acquisition and hence, smart farming possible [6]. In recent years, many
studies have been performed in smart farming and precision agriculture [7–13]. Currently,
Industry 4.0 acts as a transformative force on smart farming processes. Industry 4.0-related
technologies, namely the IoT, big data, edge computing, 3D printing, augmented reality,
collaborative robotics, data science, cloud computing, cyber-physical systems, digital twins,
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cybersecurity, and real-time optimization are integrated into different parts of agricultural
systems [14].

To realize operational efficiency, full automation, and high productivity in these sys-
tems, different types of data are collected from operational systems using different sensors,
stored in big data systems, and processed using machine learning and deep learning ap-
proaches. Traditional data management techniques and systems are not sufficient to deal
with this scale of data, therefore, big data infrastructures and systems have been designed
and implemented. To manage the complexity of this big data, many different aspects of
data must be considered during the design of these systems. Different data management
reference architectures have been designed to date [15–17]. To the best of our knowledge,
none of these studies have focused on sustainable agriculture. There exist several practices
for sustainable agriculture that can protect the environment, improve soil fertility, and
increase natural resources. It is known that agriculture can affect soil erosion, water quality,
human health, and pollination services [18]. As such, sustainable agriculture is crucial to
minimize the negative effects of agricultural production. Sustainable agriculture requires
an iterative process because each actor in this system has a different responsibility, and the
success of this process is highly dependent on the success of each actor.

The goal of this study is to present a data management reference architecture for
supporting smart farming and sustainable agriculture. The study builds on the recent de-
velopments in data management and processing, i.e., big data, machine learning, and data
lake. We designed a data management reference architecture for sustainable agriculture
and evaluated it using several case studies. Domain scoping, domain modeling, and refer-
ence architecture design stages were followed to create the reference architecture. Based on
the reference architecture, we can design different application architectures. During the
validation stage of this study, we have shown the applicability of our reference architecture.

The contributions of this study are presented as follows:

• A data management reference architecture design approach is presented, which can
be used for different application domains;

• By using this design approach, a novel data management reference architecture for
sustainable agriculture was designed for the first time in literature;

• The reference architecture is validated using different case studies obtained from
the literature.

The structure of the paper follows the outline proposed by Gregor & Hevner [19]
for design science research. Section 2 summarizes the research method adopted in this
study. Section 3 defines and structures the problem by analyzing the existing literature.
Section 4 starts with the related reference architecture studies and then explains the solution
design process and the reference architecture obtained. Section 5 presents the evaluation
of the reference architecture by deriving application architectures from it based on some
requirements from the sustainable agriculture domain. Section 6 discusses the results and
Section 7 concludes the paper.

2. Research Method

The design science research (DSR) method proposed by Hevner et al. [20] was followed
in this study. DSR is a problem-solving paradigm and seeks to create artifacts through
which information systems can be effectively and efficiently engineered [20]. These artifacts
are designed to interact with a problem context to improve something in that context [21].

The activities and the artifacts span two significant dimensions, i.e., problem-solution
and theory-practice dimensions [22]. Figure 1 shows the research method used in this study.
The first step was the identification of some problem instances occurring in practice and
sharing similar aspects. These problem instances were analyzed, and a problem statement
was formed using theoretical concepts from the literature. A conceptual solution, i.e., an
artifact or artifacts, was designed by following a systematic approach. Domain analysis was
used to derive and represent domain knowledge to be used for solution design. Domain
analysis involved domain scoping and domain modeling activities [23]. Domain scoping
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refers to the identification of relevant knowledge sources to derive the key concepts of
the solution [24]. To this end, several searches were conducted on the Scopus database
using different search strings. Domain modeling aims at unifying and representing the
domain knowledge obtained from relevant sources. The feature model was used to rep-
resent the output of domain modeling [25]. A reference architecture was designed as a
conceptual solution.
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To evaluate the reference architecture, requirements were specified using the recent
literature on sustainable agriculture [26–30]. Based on these requirements, a concrete
application architecture was derived using the reference architecture.

In accordance with the research method, the following sections present problem
definition, design of a solution, and an evaluation of the solution.

3. Problem Definition

This study was motivated by different cases involving different data management
requirements to support sustainable agriculture. The following three cases were used for
understanding and conceptualizing the problem.

• Case 1: Satellite images (e.g., Sentinel-2 data) can be obtained from a data provider.
These images can be processed to derive plant parameters such as Leaf Area Index
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(LAI), biomass, and chlorophyll content during the growing season [31]. Afterward,
the current growth status and development of cultivated crops at each location in
the field can be deduced [32]. This information can be used for site-specific plant
protection and fertilization measures [33] and hence, support sustainable agriculture.

• Case 2: Harvested crop volume can be quantified and recorded in real time using
numerous sensors [34]. Various parameters such as quantity per hectare and flow can
be calculated and crop productivity maps can be built [34]. Farmers can use these
maps to optimize inputs such as fertilizers, pesticides, and seeding rates, and increase
yields [35].

• Case 3: Machinery process data such as speed, angle, pressure, and flow rate can be
obtained through sensors in tractors and equipment [4]. Machine, worker, field, and
time slot data can be stored, and basic statistics like minimum, maximum, standard de-
viation can be computed [4]. As a result, automated documentation of the production
process and site-specific work can be attained [4].

Table 1 summarizes the above-mentioned cases from a data management perspective.
Similar to many cases in various domains, at a high level, digital data are produced and
fed to a software system to be processed and stored. Such a system can be named as a
data management platform and produce outputs that can lead to better business outcomes.
As per the first case, satellite images can be processed via computer vision algorithms to
drive plant parameters such as Leaf Area Index (LAI), biomass, and chlorophyll content,
which can be used to track the current growth status of cultivated crops and support
decision-making activities.

Table 1. A summary of the cases presented above from a data management perspective.

Data Input Data Processing Data Output Outcome

satellite images derive plant parameters via
computer vision algorithms

plant parameters such as Leaf
Area Index (LAI), biomass,

and chlorophyll content

track current growth status and
development of cultivated crop at

each location

harvested crops volume
via sensors build crop productivity maps

various parameters such as
quantity per hectare and flow

on the map

use such maps to optimize inputs
such as fertilizers, pesticides, and
seeding rates, and increase yields

machinery process data
via sensors compute statistics

machine, worker, field, and
time slot data along with basic

statistics such as minimum,
maximum, and

standard deviation

attain automated documentation
of production process and

site-specific work

The next section describes the solution design and the reference architecture.

4. Solution Design and Artifact Description

This section starts with a summary of related reference architecture studies and then
presents the three steps of the solution design phase, namely, domain scoping, domain
modeling, and reference architecture design.

4.1. Related Reference Architecture Studies

Before presenting our reference architecture, we discuss the available reference ar-
chitectures in the literature. While Nikkilä et al. [36] and Kaloxylos et al. [37] presented
architectural aspects of Farm Management Information Systems (FMISs), they did not
propose a reference architecture.

Tummers et al. [17] designed a reference architecture for FMISs. They first identified
the stakeholders and their concerns. Afterward, a feature model for FMISs was created.
The reference architecture was designed and represented via context and decomposition
views. Three case studies were performed to show the applicability of the proposed
reference architecture.
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Köksal & Tekinerdogan [6] proposed a reference architecture for IoT-based FMISs.
They proposed an architecture design method and showed that the approach is practical
and effective. Their architecture includes the following main features: data acquisition,
data processing, data visualization, system management, and external services. Each main
feature consists of several sub-features. For instance, the data processing feature involves
the following sub-features: image/video processing, data mining, decision support, and
data logging. They used decomposition, layered, and deployment views to document
the reference architecture. For deriving a concrete FMIS architecture, their reference
architecture can be used.

Kruize et al. [38] proposed a reference architecture for farm software ecosystems. Farm
software ecosystems aim to fulfill the needs of several actors in the smart farming domain.
In that respect, their scope is much wider compared to FMISs. The farm software ecosystem
reference architecture mainly focuses on the problem of bringing various software and
hardware components together to form a platform for multiple actors.

To the best of our knowledge, there is no other study that presents a data management
reference architecture for sustainable agriculture. Although some of the previous studies
mention several data-related components, a complete architectural view of managing data
for sustainable agriculture was missing. As such, our reference architecture study aims to
fill this research gap.

4.2. Domain Scoping

The Scopus database was used as the knowledge source for domain scoping. To
identify the search keywords, it is crucial to understand the recent factors driving reference
architectures for data management. The big data concept emerged to highlight challenges of
data management, including volume, velocity, and variety [39]. Machine learning is another
hot research topic, which tries to acquire knowledge by extracting patterns from raw
data [40,41] and solve problems using this knowledge. Data lake is another recent concept
to emerge that addresses the shortcomings of data warehouses. A data lake can be defined
as a data management platform that allows the storing of both structured and unstructured
data, unlike data warehouses that handle only structured data. This type of platform is
designed to enable big data processing, real time analytics, and machine learning. Based on
these recent trends, four search strings were used to form the initial paper pool. The phrase
“reference architecture” was combined with four phrases representing the recent trends
in data processing for sustainable agriculture (i.e., data management, big data, machine
learning, and data lake). The search keywords were kept general to have a high recall and
relatively low precision. Although this required more effort from the authors, obtaining a
broader initial set of papers decreased the possibility of missing relevant studies.

The database search on Scopus was conducted in February 2021. No criterion was
set for the publication date. A total number of 270 papers was obtained for the pool of
candidate papers. All the results were combined in an Excel sheet, which included useful
information about the papers such as title, abstract, keywords, and publication date, which
are used in further steps.

To identify the relevant papers for designing a reference architecture, authors applied
the exclusion criteria to the papers obtained from Scopus. The papers, which were du-
plicated, not written in English, or without a full text available, were filtered out. The
papers involving a reference architecture to process data in any business domain were in-
cluded. Seven papers included a reference architecture for data processing, along with the
essential components.

The data extraction phase followed the selection of relevant papers. The components
of the data processing architecture listed in the papers were extracted and recorded in an
Excel sheet. These components were unified by reading the definitions presented in the
papers. Table 2 shows the unified list of the components and the source papers where each
component was identified.
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Table 2. The unified list of components identified in the literature.

[15] [42] [43] [44] [45] [46] [47]

Ingestion X X X X X X X
Information
Extraction X

Data Quality
Management X X X X X

Integration X X X X
Analysis X X X X X X X
Storage X X X X X X X

Security/Privacy X X
Metadata

Management X

Replication/Archiving X X X

All the papers address three main components that deal with: collecting data from
various sources (i.e., acquisition), processing data to provide some value to data consumers
(i.e., analysis), and persist data (i.e., storage). Pääkkönen and Pakkala [47] identified
information extraction as a component to extract structured data from unstructured and
semi-structured data, such as email or images. Data quality management is another vital
component to handle data quality problems. Data received from various sources should be
integrated for further analysis. Security and privacy components are used to protect data
from unauthorized data and for proper handling of personal data. Metadata management
refers to the creation and storage of metadata to document the meaning of data. The
replication component ensures redundant storage of data sources to provide better data
availability in case of technical problems. The archiving component is responsible for
storing cold data for future possible needs.

4.3. Domain Modeling

Feature modeling is one of the approaches to represent domain knowledge in a
reusable format [24,25]. Figure 2 shows the feature model, which is derived from the
unified list of components presented in Table 2. A feature diagram can include manda-
tory and optional features. Three components identified by all papers are treated as
mandatory features. The remaining features are optional and can be used depending on
business requirements.

Data are needed to be onboarded to a data platform for further processing and storage,
a process referred to as the ETL (extract, transform, and load) process in traditional data
warehousing architectures [48]. Such architectures possess a pre-defined data schema and
data are loaded based on this schema. Data ingestion refers to the process of transferring
data from providers to a platform for further processing [49]. The umbrella term for such
processes is data acquisition. Data can be acquired in batches at regular intervals or in real
time (or in near real time) as streams. A component acquiring data streams should be able
to handle data with high velocity [50].

Information extraction is intended for obtaining useful information from unstructured
and semi-structured data [51]. Unstructured and semi-structured data may include natural
language text, image, audio, and video. Several tasks performed under information extrac-
tion include classification, named entity recognition, relationship extraction, and structure
extraction [16,48,52]. Named entity recognition (i.e., named entity identification) aims at
identifying and classifying named entities in unstructured or semi-structured texts into
predefined categories such as a person, organization, or location. For instance, Gangadharan
and Gupta [53] extracted names of crops, soil types, crop diseases, pathogen names, and
fertilizers from documents on agriculture. Relation extraction is the task of detecting and
classifying predefined types of associations among recognized entities [52]. For example,
relationships among crop diseases and locations can be extracted. The sub-features for
information extraction can be expanded depending on domain-specific requirements.
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Data quality management refers to handling data quality problems that may arise due
to several reasons [48]. There may be missing, incorrect, unusable, or redundant data [54].
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To address these main data quality problems, missing data can be completed, incorrect data
can be corrected, unusable data can be transformed, and redundant data can be cleaned.

In general, data management platforms acquire data from multiple sources that usually
involve differences in data models, schemas, and data semantics [55]. Data integration
aims at combining heterogeneous data and providing a unified view of these data [56].
One technique for data integration is schema mapping, which refers to conveying the data
schemas of multiple data sources into one global common schema [57].

Data are analyzed to obtain some value from them. Results of analysis may provide
insights to users and constitute some intermediate output for further processing [48].
Stream analysis encompasses the timely processing of flowing data and generates required
outputs. For instance, an environmental monitoring system can process raw data coming
from sensor networks to identify critical cases [58]. On the contrary, batch analysis is
conducted on static datasets [59]. Data mining and machine learning, including deep
learning algorithms, may be utilized to produce deeper analyses [60,61].

Storage is a feature supporting other features and refers to the temporary and persistent
storage of data. To manage the increased volume, velocity, and variety of data [39], different
types of data stores are released. Therefore, the storage feature involves various database
management systems (e.g., Microsoft SQL Server, Oracle, PostgreSQL, or MongoDB) imple-
menting different data models such as relational or nonrelational (or NoSQL).

The security and privacy feature addresses authentication and authorization, access
tracking, and data anonymization [48]. Several standards, guidelines, and mechanisms can
affect the realization of this feature, such as data encryption standards and mechanisms,
access guidelines, and remote access standards [62].

Metadata management is related to planning, implementation, and control activities
to enable access to metadata [62]. This feature mainly involves capabilities related to
collecting and integrating metadata from diverse sources and providing a standard way to
access these metadata [62].

The replication feature manages the storage of the same data on multiple storage
devices [62]. While having replicated instances of data support high-availability, data con-
sistency may become an issue to deal with. The archiving feature addresses the movement
of infrequently used data onto media with a lower retrieval performance [62].

4.4. Reference Architecture Design

Based on the abstraction derived from the cases presented in Section 3, Figure 3 shows
the context diagram of a data management system. The context diagram shows the overall
purpose of the system and its interfaces with the external environment [63]. At a very high
level, some data providers send data to a data management system. These may be humans
entering data through a graphical user interface or external systems providing input data
to be processed. Data obtained from data providers are stored, processed, and served to
data consumers based on their requirements.
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Figure 4 shows the decomposition view of the data management reference architecture
proposed for data processing.
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Acquisition components are responsible for onboarding data to the data management
platform for further processing. Useful information such as named entities and relations
can be extracted from the acquired data. Quality problems can be resolved by completing,
correcting, transforming, and cleaning the acquired data to obtain more accurate results
from analyses. The data obtained from various sources need to be integrated to end up
with better and richer insights. Various components can be used to analyze data to support
decision-making. The storage component handles different modes of storing data. The
security and privacy component is needed to protect data from unauthorized access. Data
on the description of acquired data, are handled by the metadata management component.
Replication may be needed for high availability. An archive component is usually required
to manage the process of archiving unused historical data.

The next section presents how an application architecture can be derived from the
reference architecture based on the requirements in sustainable agriculture.

5. Validation

To evaluate the reference architecture, a set of requirements was extracted from
recent papers on sustainable agriculture [26–30]. The high-level requirements address
issues on crop yield prediction [27], irrigation management [28], real time variable-rate
fertilization [30], and exotic animal infectious diseases monitoring [26]. These diverse high-
level requirements address various data management aspects in sustainable architecture.

Sustainability is a long-term, high-level goal involving several aspects and sub-goals.
Generally, there is a gap between software requirements and sustainability goals. While
software requirements tend to be more tangible, sustainability goals tend to be more
intangible. Therefore, a tangible decomposition of sustainability and the ability to map it to
concrete software requirements are required to monitor the achievement of sustainability
goals [64].

Penzenstadler and Femmer proposed a reference model to show the dimensions of
sustainability (i.e., individual, social, economic, environmental, and technical) and map
them to high-level software requirements [64,65]. Figure 5 shows the high-level software
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requirements obtained from the literature and how they are mapped in the sustainability
model proposed by Penzenstadler & Femmer [64,65].

The goal of sustainability has several dimensions such as economic and environmen-
tal. There are moral and natural goods that are perceived as an expression of a specific
dimension [64]. Long-term profit and healthy environment are two examples of values
contributing to economic and environmental dimensions, respectively. Indicators are quali-
tative or quantitative metrics that express a specific degree or score regarding a value [64].
Consumption amounts of resources, water, agricultural pesticide, and weedicide are exam-
ples of indicators. Activities are measures taken to contribute to values [64] and can have
different levels of granularities, which are associated with each other. Lower level activities
such as crop phenotypic monitoring, shown in Figure 5, can contribute to a higher-level
activity such as variable-rate fertilization management. Lower level leaf activities, such
as predicting crop yield, shown in Figure 5, can be treated as the high-level software
requirements (e.g., high-level use cases or epics) against which one or more system features
are developed. The components of the data management reference architecture used to
realize each high-level software requirement are described as follows.

Crop yield prediction is an essential task for growers and farmers to decide on what
and when to grow [66]. However, it is extremely challenging due to numerous complex
factors [67]. To overcome this challenge, researchers started to use machine learning (ML)
algorithms to predict crop yield based on various input variables [27]. Mohsen et al. [27]
suggest using weather, soil, plant population, and planting process data. These historical
data are extracted from various sources such as surveys [68,69] and stored (acquisition:
batch). Unusable data such as rows with missing values are removed (cleaning) and some of
the values are normalized (transformation). The data obtained from different sources are
combined (integration). Several ML models are built through experimentation (machine
learning: model development). One of the obtained ML models that exhibits a satisfactory
performance is deployed (machine learning: model deployment). The performance of the
deployed model should be monitored for a possible performance degradation [70,71].
When the performance does not meet expectations, a new ML model should be trained
and deployed.

Wireless sensor networks using IoT technologies can be utilized for irrigation man-
agement [28]. Sensors can measure real time environmental data such as soil moisture in
predefined periods and send these data to the data storage over the Internet (acquisition:
stream) [72]. A weather forecast can be obtained from a data provider (acquisition: batch) to
manage irrigation by considering the conditions that affect the irrigation process, such as
rain or strong winds [72]. The measurement and forecast data are combined (integration)
by considering time dimension, i.e., data obtained from different sources must fit into
the same temporal window [73]. Based on the combined data, irrigation decisions can be
drawn based on predefined rules [28] or a prediction model (machine learning) [73]. The
data on this decision can be sent to an actuator to control irrigation.

Crop phenotypic information can be used to enable real time variable-rate fertiliza-
tion [74,75]. The predictors of phenotypic information involve crop three-dimensional size,
biomass, and vegetation index as well as other indicators [30]. These data can be acquired
using aviation-based [76,77] and ground-based [78] approaches. Data obtained through
sensors mounted to UAVs [79] or ground-based phenotypic platforms with a series of sen-
sors and a GPS [80,81] can be ingested into a data management platform (acquisition: stream).
To obtain accurate predictions of crop phenotypic information, it is necessary to combine
multi-source sensor data such as color, depth, and spectral data with environmental and
crop physiology data [30] (integration) and develop ML models (machine learning: model
development). ML models are needed to be deployed (machine learning: model deployment)
and used for real time variable-rate fertilization. As a result, improvements in the level of
fertilizer utilization efficiency enable environmental and economic sustainability benefits
by maximizing crop output and minimizing fertilizer input [30].
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Exotic animal infectious diseases are considerable threats to global health security
and economic stability [26,82]. One of the vital sources for detecting signals of disease
is online news platforms. Data can be collected from platforms such as Google News
(acquisition: batch) and stored for further analysis (storage). The named entities such as
location, date, disease, hosts, and number of cases can be extracted using Natural Lan-
guage Processing (NLP) techniques [26] (information extraction: named entity recognition). In
addition, predefined types of relationships among the recognized entities can be detected
(information extraction: relation extraction). As an example, the sentence “12 pigs have been
infected by African swine fever in Poland” can provide the following entities [26]: number
of cases = 12; host = pig; disease = African swine fever; location = Poland.

Table 3 shows the functionalities extracted from the three problem cases (PC) and the
four validation cases (VC). Figure 6 presents how these functionalities are mapped to the
components of the reference architecture proposed in this study.

Table 3. The functionalities in the problem cases (PC) and validation cases (VC).

Case # Functionality

PC1

PC1.1. obtain and store satellite images

PC1.2. process images to derive plant parameters, such as leaf area index (LAI), biomass, and
chlorophyll content

PC1.3. deduce the current growth status and development of cultivated crops at each location in the field

PC2
PC2.1. obtain and store harvested crop volume in real time using sensors

PC2.2. calculate parameters such as quantity per hectare and flow and build crop productivity maps

PC3
PC3.1. obtain and store machinery process data; such as speed, angle, pressure, and flow rate through

sensors in tractors

PC3.2. compute basic figures; such as minimum, maximum, standard deviation and produce
documentation of the production process

VC1

VC1.1. acquire and store historical data on weather, soil, plant population, and planting process

VC1.2. remove unusable data and normalize the remaining data

VC1.3. combine data on weather, soil, plant population, and planting process

VC1.4. build ML models and deploy the one that best satisfies requirements

VC2

VC2.1. measure and store real time environmental data

VC2.2. obtain and store weather forecast

VC2.3. combine measurement and forecast data

VC2.4. decide on irrigation based on predefined rules or a prediction model

VC3

VC3.1. obtain and store data, such as crop three-dimensional size, biomass, and vegetation index

VC3.2. combine multisource sensor data, such as color, depth, and spectral data, with environmental and
crop physiology data

VC3.3. build ML models and deploy the one that best satisfies requirements for real time
variable-rate fertilization

VC4

VC4.1. obtain and store news from online news platforms

VC4.2. extract named entities, such as location, date, disease, hosts, and number of cases

VC4.3. detect predefined types of relationships among recognized entities
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6. Discussion

This research presents a novel data management reference architecture for sustainable
agriculture using well-established architecture modeling techniques. As such, this study
can pave the way for similar studies on data management reference architectures. The
reference architecture was designed based on domain analysis. Other data management
application architectures can be developed based on this reference architecture using
variant features specified in this study.

The features shown in this study were obtained from peer-reviewed papers in the
Scopus database. The inclusion of other databases may reveal unidentified features and the
presented reference architecture may be extended accordingly. Since precision agriculture
and smart farming are still evolving, new features can be integrated in the future, and
data management reference architecture can be adapted. Different tools, techniques, and
systems are currently developed by practitioners and researchers in smart farming and
therefore, we expect to see new papers in databases that might bring new functionalities
and features to the presented reference architecture. However, the presented methodology
and the overall reference architecture can be easily changed to reflect the recent changes in
smart farming.

The reference architecture is used to derive application architectures based on a multi-
case study approach. For the multi-case study, there is a threat of misinterpretation of
applied concepts. Although authors discussed the concepts carefully and iteratively, there
is a possibility that several concepts may have been interpreted differently compared to the
concepts presented in the selected studies. The generalization of the presented findings
must be taken with caution because different case studies may require new functionalities.
While we can identify many different application scenarios in smart farming, the scenarios
share some features from a data management perspective. Therefore, four case studies
were shown to demonstrate the applicability of the proposed reference architecture. Other
researchers can also evaluate the applicability of this architecture using different case
studies in smart farming and create an application architecture for their uses.

It was shown that reference architecture design is useful for the agri-food domain. This
study focused on sustainability; however, it can be extended to a larger context by covering
other critical aspects of agriculture. For sustainable agriculture, the presented features are
beneficial when designing new systems for agricultural production. Further research is
needed to evaluate the applicability of the data management reference architecture for
different application domains. We expect that increasingly more researchers will focus
on sustainability in agriculture in the near future and develop novel models to fully
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address sustainability from several aspects. The advancement in machine learning and
particularly deep learning techniques can also contribute to the development of novel
models addressing sustainability.

7. Conclusions and Future Work

In this study, a data management reference architecture for sustainable agriculture
was proposed and evaluated using different case studies. To the best of our knowledge,
this is the first study that focuses on sustainability within the context of data management
reference architecture. The design science research (DSR) method was applied while de-
signing the reference architecture. For solution design, domain scoping, domain modeling,
and reference architecture design stages were followed. Domain scoping was performed
based on relevant papers, the domain model was represented as a feature model, and
the reference architecture was built at the end of the reference architecture design stage.
Three case studies was investigated from different perspectives and the applicability of the
data management reference architecture was evaluated. We consider that this research can
improve the research in sustainable agriculture with respect to data management and pave
the research for designing smart systems for smart farming and precision agriculture.

As future work, we plan to extend this study with new case studies and evaluate
the applicability of the presented reference architecture for different scenarios. Another
planned study involves the mapping of the reference architecture to the components of the
farm management information systems and platforms used in the industry. This mapping
can help us identify the possible missing components in the reference architecture. In
addition, we can identify enhancement opportunities for the systems and platforms used
in the industry.
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